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ABSTRACT

Instructors routinely use automated assessment methods to evalu-
ate the semantic qualities of student implementations and, some-
times, test suites. In this work, we distill a variety of automated
assessment methods in the literature down to a pair of assessment
models. We identify pathological assessment outcomes in each
model that point to underlying methodological flaws. These the-
oretical flaws broadly threaten the validity of the techniques, and
we actually observe them in multiple assignments of an introduc-
tory programming course. We propose adjustments that remedy
these flaws and then demonstrate, on these same assignments, that
our interventions improve the accuracy of assessment. We believe
that with these adjustments, instructors can greatly improve the
accuracy of automated assessment.

CCS CONCEPTS

• Social and professional topics → Student assessment; CS1;
• Software and its engineering→ Software defect analysis;
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1 INTRODUCTION

Instructors routinely rely on automated assessment methods to
evaluate student work on programming assignments. In principle,
automated techniques improve the scalability and reproducibility of
assessment. However, whilemore reproducible than non-automated
methods, automated techniques are not, ipso facto, more accurate.
Automated techniques also make it easy to perform flawed assess-
ments at scale, with little feedback to warn the instructor. Not only
does this affect students, it can also affect the reliability of research
that uses it (e.g., that correlates against assessment scores).
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In this work, we explore methods for assessing implementations
and test suites submitted in response to programming problems.
In particular, we consider how student-submitted artifacts may be
used to enhance instructor-provided ones within the context of
automated assessment. This is hardly a new question: as discussed
in section 2, many authors use student artifacts to assess other
students’ work. However, we find that the models in the literature
for doing this can have significant flaws that can unfairly reward
or penalize students.

As we will show, the key to including student artifacts in a fair
way builds on screening them with particular kinds of instructor-
provided artifacts, both implementations and test suites, both cor-
rect and incorrect. Concretely, we analyze two common methods
for assessing student implementations. We explore the methods
both foundationally and experimentally, using data from an intro-
ductory course. We highlight the perils of these approaches, and
present an improved model and technique with which instructors
can immunize their assessments from these perils.

The contributions of this paper are:

(1) identification of conceptual pathologies in existing methods
for automated assessment,

(2) experimental evidence that these issues arise in practice, and
(3) a new method for assessing implementations and test suites

that mitigates these pathologies.

After reviewing related work (section 2) and defining terminology
(section 3), we present (section 4) three models for assessing im-
plementations (one of them novel). Section 5 describes a process
for instructors by which our novel model can be combined with
another in a manner that iteratively improves the outcomes of both
until they are identical, and section 6 evaluates these models and
this process experimentally in the context of assessing both im-
plementations and test suites. Section 7 discusses implications for
those who develop or use automated assessments for programming
assignments.

2 RELATEDWORK

Automatic assessment of student implementations and test suites is
typically done by testing their behavior against a reference artifact
(rather than through proof-based formal methods [31]). We focus
our work (and thus this section) on assignments for which the
inputs and outputs are data values (as opposed to, say, GUIs which
require their own style of testing techniques [12, 17, 35]).

There are multiple choices for both the form of the reference
artifact(s) and the corresponding testing methodology, depending
on which student artifact one wishes to test.
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2.1 Evaluating Implementation Correctness

Goldwasser [18] asked students to submit a collection of interesting
inputs. He then ran each input through each of the student imple-
mentations and an instructor-written one, checking whether the
two agreed on their computed output. He notes the challenge of
this approach when the outputs are non-deterministic.

Many testing frameworks support assertions that consist of con-
ditions to check against the run-time behavior of an implementation.
While such assertions can be embedded in the implementation itself,
we focus here on ones that are provided as a standalone artifact
(as this is a better fit for automated testing). These assertions can
check that a specific input yields a specific output, or that the out-
put of a given function always satisfies a stated predicate (such
as lying within a range of numbers). Assertions are part of most
unit-testing frameworks; some languages even include constructs
for these assertions directly in the language itself (e.g., Pyret [5],
the Racket student languages [14], and Rust [6]).

Some forms of assertion-based testing generate the inputs to use
in testing, rather than require students or instructors to provide
them manually. Tools such as QuickCheck [3] generate test cases
from formal specifications of a program’s expected behavior (then
test the program against the same formal specification).

Many instructors assess student implementations using a test
suite of their own creation [2, 15, 16, 19, 21, 22, 24, 27, 36]). This
approach is supported by major automatic assessment tools, such
as ASSYST [23], Web-CAT [7], and Marmoset [34]. Some instruc-
tors also leverage student-written tests for testing other students’
implementations. In the literature, this approach is most closely
associated with all-pairs style evaluations, in which student test
suites and implementations are assessed by running every test suite
against every implementation [11, 18, 25]. This approach also ap-
pears in research on students’ testing abilities, such as Edwards’
proposed metric of “bug revealing capability” [8–10]. Broadly, stu-
dent test suites can be appropriated for the task of assessing any
corpus of implementations whose correctness is unknown—not
just those of students. For instance, Shams and Edwards [30] use
student test suites to filter out mutations of an initially-correct
reference implementation whose faultiness is not detectable by any
student or instructor test suite.

2.2 Evaluating Test Suites

Student test suites are typically assessed against twometrics: whether
the tests conform to the specification (correctness), and whether the
tests cover the interesting inputs to a problem (thoroughness) [27].
Assessing correctness of a test suite typically entails running it
against an instructor-written implementation [2, 8–10, 27, 32]. This
check is particularly important when using student tests to assess
each others’ implementations [8–10, 25].

Code coverage is often used as a proxy for thoroughness; AS-
SYST [23], Web-CAT [7], and Marmoset [34] all take this approach.
Code coverage is attractive because it reflects professional software
engineering practice [26] and is not labor-intensive [8]. However,
a growing body of evidence challenges the appropriateness of cov-
erage as a measure of thoroughness [1, 9, 20], in both professional
and pedagogic contexts. Alternatively, instructors may run student

test suites against a corpus of incorrect implementations, check-
ing what fraction of these a test suite rejects. This corpus may be
sourced from students [10, 11, 18, 25, 33], from machine-generated
mutations of a reference implementation [1, 30, 33], or crafted by
the instructor [2, 27].

3 ASSUMPTIONS AND TERMINOLOGY

We assume that instructors assess implementations by running
tests against them, where each test indicates both an input to the
program and the expected output (whether directly or via some
sort of assertion). We do not assume that instructors are trying
to handle all forms of assessment automatically; style and design
assessments, for example, may be handled through separate pro-
cesses and are out of the scope of this paper. This paper focuses
on automated assessment for functional correctness. We further
assume that instructors are willing to perform some manual in-
spection of some testing results as part of calibrating the artifacts
against which automation will assess student work.

We will use the term conforms to describe test suites or imple-
mentations that are consistent with a given specification (usually
provided by the problem statement). For a test suite to accurately
flag non-conformant implementations, it needs to be fairly thorough
(a term we introduced in section 2.2). Our definition of thorough-
ness suggests that it targets a relative, rather than absolute, stan-
dard. Completely thorough test suites are generally not achievable
in practice: most programs have an infinite number of behaviors,
which cannot be covered in a finite number of tests. Nevertheless,
we assume that instructors are trying to be thorough relative to the
bugs that are likely in student implementations. We call tests that
are nonconformant (either because they assert something nonsen-
sical, or they mis-represent the specification) invalid.

When assessing an implementation against a test suite, we say
that the test suite accepts the implementation if every individual
test in the suite passes on the implementation. If even one test fails,
we will say that the test suite rejects the implementation.

Given a set of test suites to check an implementation, we will
say (par abus de langage) that the implementation is correct (rela-
tive to those suites) if every test suite accepts the implementation.
Otherwise, we will say that the implementation is faulty.

4 MODELS OF ASSESSMENT

In this paper we study and contrast three models for assessing
student implementations, the first two of which are commonly used
in prior work. We give each a name and describe its general form,
though of course individual uses of each model may differ slightly.
Figure 1 pictorially summarizes our models and the workflows
that define them. The upper part shows a student implementation
running against one or more test suites. The lower part shows
which implementations a student test suite must pass to be run
against other student implementations.

We study these models in two contexts: (1) assessing student
implementations, and (2) assessing student test suites. Each model
outputs a judgment of whether each student implementation is
faulty or not. Having established the correctness of implementa-
tions, an instructormay then evaluate the accuracy of each student’s
test suite by checking how closely its judgments of implementation
correctness match the judgments made by the model.
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Figure 1: Three models of assessing implementations, each based on a different collection of test suites. Hexagons are imple-

mentations, squares with concave corners are test suites. Solid artifacts (labeled I) are instructor-provided while hollow ones

are from students, with letters and numbers differentiating them as needed.

impor t number_sor t from impl

check :
number_sor t ( [ 3 , 2 , 1 , 0 ] ) )

i s [ 0 , 1 , 2 , 3 ]
end

impor t number_sor t from impl

check :
number_sor t ( [ 3 , 2 , 2 , 1 ] ) )

i s [ 1 , 2 , 2 , 3 ]
end

impor t number_sor t from impl

check :
number_sor t ( [ 0 , 1 , 2 , 3 ] ) )

i s [ 3 , 2 , 1 , 0 ]
end

Instructor Test Suite A Clever Test Suite A Faulty Test Suite

Figure 2: Three contrived test suites for (ascending) number_sort: (1) an instructor test suite; (2) a student test suite that, by

checking with an input that includes duplicate elements, can catch a bug that the instructor test suite cannot; and (3) a student

test suite that, by expecting the sort to occur in descending order, is invalid with respect to the assignment specification.

4.1 Axiomatic (Axm)
The axiomatic approach, shown at the top left of fig. 1, is the simplest
and most common:

Model Summary: Each student implementation is
assessed against a single instructor-written test suite.

In the figure, student A’s implementation is being assessed against
the instructor test suite.

Pitfall. This method relies solely on the judgment of the instruc-
tor test suite. If this test suite is incorrect (which it usually isn’t, but
could be in subtle ways), conformant student implementations may
be labeled as faulty. What is even more likely, we contend, is that

the instructor test suite may be insufficiently thorough, in which
case student implementations that are actually nonconformant may
be wrongly labeled correct.

As a simplistic but illustrative example, assume that students
have been asked to implement a function, number_sort, that sorts
its input in ascending order. Figure 2 shows a rudimentary instruc-
tor test suite (left). Another test suite (center) tests something be-
yond the instructor suite (in this case, correct handling of duplicate
elements); we call such test suites clever. If a student implemen-
tation did not handle duplicate elements, the instructor test suite
will accept it while the clever suite rejects it. The test suite on the
right violates the specification by expecting descending order; such
a test suite is invalid (as defined in section 3).
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Instructors might assume (based on their experience with the
material) that their test suites are correct and fairly thorough (es-
pecially for assignments they have given multiple times), but this
model provides no inherent mechanism for validating this belief.
The authors of this paper, in particular, were victims of this hubris
(we return to this in section 6.1).

Assessment Impact. If the instructor test suite is insufficiently
thorough, faulty implementations may be labeled as correct. These
students would not receive feedback about these undetected flaws.
Furthermore, if these labels are used as a basis to assess student test
suites, students who manage to detect bugs the instructor does not
will be penalized, since their suite’s judgments about correctness
disagree with the judgments of the instructor’s suite.

4.2 Algorithmic: Single Implementation

(AlgSing)
How might we raise the thoroughness of the test suite used for
assessing student implementations? Numerous existing tools and
methodologies augment instructor test suites with student-written
ones (e.g., [8–10, 18, 30]). Of course, student test suites could be
incorrect, so this approach needs a method to determine which
ones can be trusted for this task. Validating students’ test suites
against an instructor implementation is a obvious (and oft-taken)
approach:

Model Summary: Each student implementation is
assessed against the instructor test suite as well as
student test-suites that are correct relative to the in-
structor implementation.

In the first test-suite assessment in fig. 1 (lower left), B’s, C’s, and
D’s test suites are evaluated against the instructor implementation.
B’s and D’s are consistent with the implementation—the check
marks on them indicate that they have passed this check—but C’s
is not. C’s test suite is subsequently ignored, but B’s and D’s are
added to the pool of test suites against which A’s implementation
is tested. The instructor test suite has presumably already been
checked for correctness against the instructor implementation, or
is axiomatically taken as correct.

Note that this model does not consider thoroughness as a cri-
terion for including a student test suite. A test suite that is not
thorough might not add much testing power, but it won’t inaccu-
rately mark an implementation as faulty. The other authors cited in
section 2 include student tests at the granularity of a single test case.
For simplicity sake, our work considers only entire test suites. Note
that this does not change the flaws we identify, only the potential
magnitude of our measurements.

A First Experiment. Whenwe tried this technique on submissions
for one of our assignments, the number of faulty implementations
skyrocketed, from 28% of implementations identified as faulty by
the instructor test suite alone, to 89% when student tests were also
used. (We discuss details in section 6.) What happened?

This drastically different assessment outcome resulted from trust-
ing tests that made assertions beyond the bounds of the specifica-
tion. We illustrate the issue using two succinct example problems
(that are simpler than those from our real data):

(1) Implement a function that computes a distance metric be-
tween two non-empty lists of values.

(2) Implement a function that transforms a list of numbers into
a binary search tree. (The assignment does not specify in
which branch duplicates should be placed.)

Each of these specifications, as given, admits multiple, functionally-
distinguishable implementations. Respectively, the student imple-
mentations

(1) may do anything if either of the inputs are empty;
(2) may place equal values in either the left or right subtree.

The authors of these implementations are likely to write tests that
assert whichever particular behavior they happened to choose.
These tests, while correct with respect to the student’s own imple-
mentation, are not appropriate tests of all implementations.

In general, such tests, which we term over-zealous, can exceed
the bounds of the specification in two ways:
• Be overly liberal in what they supply for inputs; e.g., if the
specification asks for a function that is only defined on non-
empty lists, then a test that supplies the function with an
empty list is over-zealous.
• Be overly conservative in what they accept as outputs; e.g., if
the specification does not dictate to which side of the binary
search tree duplicate elements should be placed, a test that
assumes duplicates go to a particular side is over-zealous.

Pitfall of Over-Zealous Tests. Consider a student test suite whose
over-zealous test cases coincidentally conform to the specific be-
havior of the instructor implementation. Since that suite will pass
the instructor implementation, it will be labeled correct and then
used to judge whether other student implementations are correct.
Consequently, any other student implementations that behave dif-
ferently (even if they satisfy the specification) will be marked faulty
by that over-zealous test suite.

If two student test suites over-zealously test different aspects of
the specification, and are both incorporated into the implementation
assessment process, it can be virtually impossible for any implemen-
tation to be deemed correct. Both forms arose in our experiment,
resulting in the dramatic increase in the percentage of implemen-
tations that were deemed faulty. This experiment illustrates why
eliminating over-zealous test cases from the implementation labeling
process is crucial.

Assessment Impact. If over-zealous tests are not eliminated, any
conformant implementation that diverges even slightly from the
instructor implementation may be wrongly judged as faulty. Fur-
thermore, if this flawed labeling is used to assess student test suites,
students will “fail” to identify these “faulty” implementations, and
will be penalized for apparently having un-thorough test suites.

4.3 Algorithmic: Multiple Implementation

(AlgMult)
Fundamentally, the problem created by over-zealous tests is one of
over-fitting: while the specification describes a space of implemen-
tations, just one sample from that space (a single instructor imple-
mentation) is used to determine whether all other implementations
conform to that specification. To mitigate this flaw, an instructor
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can craft multiple correct implementations in a manner to be de-
fined shortly. When assessing implementations, only test suites that
are deemed correct against all of the instructor implementation are
used in assessing other student implementations.

Model Summary: Each student implementation is
assessed against the instructor test suite as well as
student test-suites that are correct relative to multiple
instructor implementations.

In fig. 1, B’s and D’s test suites are checked against three in-
structor implementations. B’s is consistent with all three, but D’s
appears to be over-zealous, failing implementation 2. Therefore,
D’s test suite is no longer considered, whereas B’s test suite (whose
checks denote passed instructor implementations) can be added to
the pool of test suites for assessing A’s implementation.

How should instructor implementations be different? Different
instructor implementations should reflect different scenarios al-
lowed by the specification (e.g., guarding against different kinds of
over-zealous tests). In particular, different implementations might
admit more inputs than the specification requires, or might produce
outputs that are consistent with the specification in different ways.
For example:

(1) If the specification only dictates how a function behaves on
non-empty lists, then given an empty list, one instructor
implementation might throw an exception while another
returns an innocuous value.

(2) If the specification does not dictate to which side of a bi-
nary search tree duplicate elements should be placed, one in-
structor implementation might place them on the left, while
another places them on the right.

Such implementations are adversarial in that they check for vi-
olations of the robustness principle.1 A good set of adversarial
implementations would be diverse enough that an over-zealous test
suite would reject at least one of them. If this happens, over-zealous
test suites would be ruled out before being used to assess other
student implementations.

These restrictions against over-zealousness may appear to pose a
high bar on student tests. Indeed they do, but the bar is not unattain-
able: in another experiment (section 6.1), the addition of adversarial
instructor implementations reduced the fraction of student test
suites trusted for assessing implementations from 79% to 35%. It
is important to remember, however, that this high bar is for a test
suite to assess other student implementations; it is not necessarily
the bar we would use to grade the test suite itself.

We observe in passing that nothing in our description limits
adversarial implementations to screening student tests. The fruits
of labor to obtain additional tests by any means—from colleagues,
by crowdsourcing, by the instructors themselves, etc.—should all
pass through the same adversarial process before being used to
assess student work. This burden is nevertheless worth bearing
due to the problems created by the two more common methods of
assessment (Axm and AlgSing).

1This principle is also known as Postel’s Law, after Jon Postel’s formulation of the
principle in an early specification of TCP: “TCP implementations should follow a
general principle of robustness: be conservative in what you do, be liberal in what you
accept from others.” [28]

Assessment Impact. Through crafting multiple adversarial imple-
mentations, an instructor can defend against the risk of incorporat-
ing over-zealous tests. However, the consequences of misplacing
trust in even a single over-zealous test are the same (and no less
dire) than those described for the AlgSing method.

5 TESTING THE TESTER

A common flaw underlies the vulnerabilities of all three models:
if an instructor does not adequately consider some aspect of the
problem, their assessments of students may suffer. Taken individu-
ally, they provide neither a resolution nor a means to detect this
flaw. While AlgMult partially defends against against the severe
threat of mistrusting a student test, its defense relies on instructors’
sufficient development of adversarial implementations. Instructors
can avoid this risk entirely by using Axm instead of an algorithmic
model to grade student implementations, but that leaves Axm’s risk
of penalizing students who detect bugs that the instructor failed to
write tests for.

By leveraging both axiomatic and algorithmic labeling, an in-
structor can detect and resolve this flaw. Consider that for an as-
signment with an adequate set of adversarial implementations and
an instructor test suite that is not out-matched by any valid student
test, Axm and AlgMult must result in an identical correctness
labeling of student implementations. If either of these conditions is
false, there must exist an incorporated student’s test that identifies
some implementation as faulty that the instructor’s test suite iden-
tified as correct. In this event, one of two possibilities must be true:
(1) that the student test is, in fact, nonconformant, but there was
not an adversarial implementation to identify it as such, or (2) that
the student test is, in fact, conformant, and captures a behavior not
explored by any test in the instructor’s suite. The instructor should
examine the test case in question, identify whether it is conformant,
and either create an adversarial implementation that rules it out, or
incorporate it into their test suite. In section 6, we apply this process
to quantify the impact of these assessment flaws on a number of
assignments in an introductory programming course.

6 EVALUATION ON COURSE DATA

To assess the extent to which these perils may actually impact
the robustness of course assessment, we applied the models to re-
assess the submitted programs and test suites of students from a
semester-long accelerated introduction to computer science course
at a highly-selective private US university. The course is primarily
taken by students with prior programming experience; students
place into it based on a series of programming assignments over
the summer. In one semester, the course covers most of the same
material as the department’s year-long introductory sequences
(fundamentals of programming, data structures, core algorithms,
and big-O algorithm analysis).

The course teaches functional programming (many students who
place into it have prior experience with object-oriented program-
ming), following techniques from the How to Design Programs [13]
curriculum. Both this curriculum and the course emphasize testing.
Students are required to submit test suites for every assignment.
Test suites are graded for both correctness and thoroughness, and
are weighted similarly to implementations in determining final
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Assignment % of Student Implementations Labled Faulty

Axm AlgSing AlgMult

DocDiff 34% 98% 46%
Nile 35% 97% 35%
Filesystem 22% 52% 26%
MapReduce 28% 89% 57%
Table 1: Percent of student implementations labeled faulty

by each model.

course grades. On some assignments, students submit test suites a
few days before submitting implementations, receiving feedback
on test-suite correctness in time to make modifications to their
implementations and test suites.

For each assignment under study, we assessed student imple-
mentations under: (i) Axm, using the instructor test suite that was
used during the semester to grade student implementations; (ii) Al-
gSing, using the instructor implementation that was used during
the semester to grade the validity of student test suites; and then
(iii) AlgMult, using the criterion specified in section 5 to develop
adversarial implementations. We quantify the impact of Axm’s and
AlgSing’s vulnerabilities by contrasting their outcomes to that of
AlgMult.

Assignments Under Study. For the analysis for this paper, we
selected four assignments that are quite different from each other
and representative of the course overall:
• DocDiff, where 91 students implemented and tested pro-
grams computing a document similarity metric using a bag-
of-words model [29].
• Nile, where 70 students implemented and tested a rudimen-
tary recommendation system.
• Filesystem, where 76 students implemented and tested rudi-
mentary Unix-style commands for traversing a (in-memory)
file structure with mutually-dependent datatypes [13].
• MapReduce, where 38 pairs of students implemented and
tested the essence of MapReduce [4] (implemented sequen-
tially), and applied it to multiple problems. This included re-
doing some previous assignments (including Nile) in terms
of the MapReduce paradigm, using their implementation.

We explored only four assignments because constructing multiple
adversarial implementations is a potentially time-consuming pro-
cess. For each assignment we constructed between two (for Nile)
and seven (for MapReduce) adversarial implementations.

The differing number of students submitting for each assignment
reflects students dropping the course (afterDocDiff), then working
in pairs (onMapReduce); the assignments are listed in the order in
which they were assigned. On each assignment, there were a few
(2-3, though 9 for Nile) submissions that were not included in the
analysis (and are not reflected in the above counts): these assign-
ments either had compile-time errors or threw run-time exceptions
that we were not able to resolve with a few minutes of work.

6.1 Impact on Implementation Assessment

Themodels produced drastically different assessments of implemen-
tation correctness. Table 1 summarizes the percentage of student

Assignment % of Student Test Suites Incorporated

AlgSing AlgMult

DocDiff 90% 81%
Nile 28% 0%
Filesystem 94% 71%
MapReduce 79% 35%
Table 2: Percent of student test suites incorporated by each

algorithmic model.

implementations that were deemed faulty under each of the three
models (theMapReduce data were mentioned in section 4). Very
few implementations are deemed faulty under Axm, the majority
are deemed faulty under AlgSing, and AlgMult lies in between
(that the AlgMult percentages are no smaller than those for Axm
matches our expectation based on their definitions).

With the Axm model, we noted that an insufficiently thorough
instructor test suite may fail to detect all faulty implementations.
We assumed that our test suites for these assignments were thor-
ough, but had not validated this belief. Contrasting the first and
third columns of table 1, we find that a substantial proportion of
students who were notified that their implementations were correct
actually had faults in their submissions. These data confirm that
there is significant room to improve the thoroughness of our tests:
both DocDiff and MapReduce show notable differences in the
percentage of faulty implementations flagged between Axm and
AlgMult.

With the algorithmic models, instructors bolster their own test
suites with student tests but, we noted, face the risk and conse-
quences of inadvertently mis-trusting an over-zealous student test.
In the case of AlgSing, instructors rely on just one known-correct
implementation to filter out invalid tests. Contrasting the second
and third columns of table 1, we find that an substantial proportion
of the implementations marked faulty by AlgSing were, in fact,
correct2. These data show that a single implementation was not
sufficient for filtering student tests. Table 2 shows the percentage of
students whose tests were incorporated by AlgSing and AlgMult.
Contrasting its two columns, we find that AlgSing consistently
over-trusted student tests.

6.2 Impact on Assessing Test Suites

Next, we explore the impact of these perils on test-suite assessment,
working with ourMapReduce data.

Methodology: The models in this paper classify implementations
as correct or faulty. As we mention in section 4, we can then use
this classification as a ground truth to assess the accuracy of stu-
dent tests. We do this by applying each test suite to a collection of
(assessed) implementations, and comparing the test suite’s classifi-
cation of their correctness against that provided by the model.

We perform this analysis on a collection of 53MapReduce imple-
mentations. This collection contains all 38 student implementations,

2We do not report statistical significance, because the nature of these analyses intro-
duce considerable nuance and difficulty in designing a statistical test. Regardless, for
students, these differences have personal significance.
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Figure 3: Assessment of test suites onMapReduce. In the top row, each dot represents a test suite; its location encodes its respective true-positive rate (the

% of faulty implementations it accepted) and true-negative rate (the % of correct implementations that it rejected). Below, a kernel density estimation plot

shows the relative commonality of true-positive and true-negative rates.
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as well as seven (adversarial) correct and eight faulty specially-
crafted implementations. These latter implementations were in-
cluded to make sure that the corpus contained a handful of each
kind of implementation (since we could not predict where the stu-
dent implementations would fall).

We quantify the closeness of each student test suite’s classi-
fication to the classification of the underlying models using the
standard metrics of binary classifiers:

• true-positive rate, the fraction of faulty implementations that
the test suite appropriately identifies as faulty;3
• true-negative rate, the fraction of correct implementations
that the test suite appropriately identifies as correct.

Figure 3 depicts the resulting true-positive and true-negative rates
of each test suite relative to the classifications produced by Axm,
AlgSing, and AlgMult (one column each, respectively). These
graphs illustrate, from the perspective of assessing student test
suites, the drastically different outcomes that can arise depending
on which model is used to label implementations.

Axm Perils: In the Axm model, a student that writes a test that
identifies a bug missed by the instructor test suite is penalized for
their thoroughness, as their test suite’s judgment of correctness is
observed as disagreeing with the judgment of the instructor’s test
suite. In the context of test suite assessment, this is reflected as a
decrease in true-negative rate.

This pathology significantly impacted the outcomes of our test
suite assessments performed atop Axm. The gaps in our test suites
were accessible enough for many students to find (even though we
had refined these test suites over several years). On DocDiff, File-
system, andMapReduce, respectively, 63%, 9% and 29% of students
identified at least one faulty implementation that instructor test
suite missed. (Only on Nile did no student test more cleverly than
the instructor had.) A contrast of theAxm andAlgMult columns of
fig. 3 bears this pathology out in the context of test suite assessment.
The true-negative density curve of Axm is shifted slightly to the
left of that of AlgMult, indicating that Axm assessed students as
having lower true-negative rates than AlgMult did. Furthermore,
we note that Axm penalizes equally students who write invalid
tests and students who test more cleverly than the instuctor. Thus,
an instructor using Axm might incorrectly conclude that their best
students failed to understand the problem specification.

AlgSing Perils: In theory, AlgSing and AlgMult (which ac-
knowledge that students may find bugs the instructor does not) rem-
edy this pathology. However, as discussed in section 6.1, incorrectly
incorporating student tests can easily give rise to a catastrophically
inaccurate assessment of implementations, which in turn leads to
inaccurate assessment of test suites. Under AlgSing, most students
have very high true-negative rates and very low true-positive rates.
This came about in part because so few implementations were la-
beled correct by AlgMult (see the middle column of table 1). Thus,
there is much less nuance in the true-negative rates, as reflected in
the horizontal bands of points in the scatter plot.

3While associating “positive” with “faulty” may seem backwards, the goal of thorough-
ness is to accurately identify faulty implementations.

6.3 Takeaway

The theoretical flaws of the standard models had real, substan-
tial impacts on our assessments. Using the technique in section 5
to develop an AlgMult assessment, we identified and corrected
numerous shortcomings in our grading artifacts. This process re-
quired close examination of each assignment statement, and we
also encountered ways in which our assignments could be made
clearer. Thus, in addition to improving our grading system with
this process, we have improved the assignments themselves.

7 DISCUSSION

In an era of growing enrollments and on-line courses, it is essential
to understand the nuances of automated assessment, especially
since it seems to naturally fit some aspects of computing. In par-
ticular, this fit can mask worrisome weaknesses. With automated
assessmentwidespread in everything fromK-12 and tertiary courses
to MOOCs to programming competitions to job placement sites
and more, its foundations require greater scrutiny.

In this paper we look closely at automated assessment of pro-
grams and of their first-cousins, test suites. Through pure reasoning,
we show that the standard models (sections 4.1 and 4.2) can suffer
from significant measurement flaws. We present a new model of
assessment (section 4.3) and a corrective technique that utilizes
it (section 5). The results of section 6 validate all these claims in
practice when assessing both implementation and test suite quality.

The problems we find in these models are disturbing in two
ways. First, the flaws can be subtle, so instructors and students
many never notice them. Indeed, as we have noted, in some cases
the assessment results in students appearing to do better than their
true performance. This may give students a false sense of confidence
in their abilities. Second, it is not trivial to extrapolate from the
feedback of these models to identifying a systemic flaw in students’
work. Especially in massive or disconnected settings, it may be
difficult to identify the problems we raise. The sheer volume of data
available may blind some people to the true quality of the data.

On a personal note, we can relate how easy these flaws are to
overlook. Like many others educators, we had used the two flawed
methods for nearly two decades, growing increasingly dependent
on them with growing class sizes (a widespread phenomenon in the
US). The initial purpose of this study was simply to test the quality
of student tests, in comparison to an earlier study by Edwards
and Shams [10]. As we began to perform our measurements, we
wondered how stable theywere, and started to use differentmethods
to evaluate stability. When we noticed wild fluctuations—which
made our analyses highly unreliable—we began to investigate why
small changes to the implementation set would have large effects,
which led to unearthing the problems reported in this paper.

We therefore concludewith a salutarywarning.While automated
assessments are valuable and have their place, their use—as with
any machine-generated artifact that draws on a large set of data—
requires significant reflection. Happily, we demonstrate that the
method of multiple adversarial implementations (section 4.3) avoids
the pathologies we have found in automated assessment, enabling
us to draw on a larger pool of inputs (namely, to consider student
test suites and implementations as well), which in turn results in
better evaluation of student implementations and test suites.

8



Who Tests the Testers? ICER ’18, August 13–15, 2018, Espoo, Finland

REFERENCES

[1] Kalle Aaltonen, Petri Ihantola, and Otto Seppälä. 2010. Mutation Analysis vs. Code
Coverage in Automated Assessment of Students’ Testing Skills. In Proceedings of
the ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion (OOPSLA ’10). ACM, New York,
NY, USA, 153–160. http://doi.acm.org/10.1145/1869542.1869567

[2] Michael K. Bradshaw. 2015. Ante Up: A Framework to Strengthen Student-Based
Testing of Assignments. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (SIGCSE ’15). ACM, New York, NY, USA, 488–493.
http://doi.acm.org/10.1145/2676723.2677247

[3] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). ACM, New York,
NY, USA, 268–279. http://doi.acm.org/10.1145/351240.351266

[4] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. http://doi.acm.org/
10.1145/1327452.1327492

[5] The Pyret Project Developers. 2018. The Pyret Programming Language. Chapter
2.2. https://www.pyret.org/docs/latest/testing.html

[6] The Rust Project Developers. 2018. The Rust Programming Language. Chapter 11.
https://doc.rust-lang.org/book/second-edition/ch11-00-testing.html

[7] Stephen H. Edwards. 2003. Improving Student Performance by Evaluating How
Well Students Test Their Own Programs. Journal on Educational Resources in Com-
puting 3, 3, Article 1 (Sept. 2003). http://doi.acm.org/10.1145/1029994.1029995

[8] Stephen H. Edwards. 2003. Improving Student Performance by Evaluating How
Well Students Test Their Own Programs. J. Educ. Resour. Comput. 3, 3, Article 1
(Sept. 2003). http://doi.acm.org/10.1145/1029994.1029995

[9] Stephen H. Edwards and Zalia Shams. 2014. Comparing Test Quality Measures
for Assessing Student-written Tests. In Companion Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE Companion 2014). ACM, New
York, NY, USA, 354–363. http://doi.acm.org/10.1145/2591062.2591164

[10] Stephen H. Edwards and Zalia Shams. 2014. Do Student Programmers All Tend
to Write the Same Software Tests? In ITiCSE. ACM, New York, NY, USA, 171–176.
http://doi.acm.org/10.1145/2591708.2591757

[11] Stephen H. Edwards, Zalia Shams, Michael Cogswell, and Robert C. Senkbeil.
2012. Running Students’ Software Tests Against Each Others’ Code: New Life
for an Old "Gimmick". In Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education (SIGCSE ’12). ACM, New York, NY, USA, 221–226.
http://doi.acm.org/10.1145/2157136.2157202

[12] John English. 2004. Automated Assessment of GUI Programs Using JEWL. In
Proceedings of the 9th Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’04). ACM, New York, NY, USA, 137–141.
http://doi.acm.org/10.1145/1007996.1008033

[13] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2001. How to Design Programs. MIT Press.

[14] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to Design Programs (second ed.). MIT Press.

[15] George E. Forsythe and Niklaus Wirth. 1965. Automatic Grading Programs.
Commun. ACM 8, 5 (May 1965), 275–278. http://doi.acm.org/10.1145/364914.
364937

[16] Eric Foxley, Omar Salman, and Zarina Shukur. 1997. The Automatic Assessment
of Z Specifications. In The Supplemental Proceedings of the Conference on Inte-
grating Technology into Computer Science Education: Working Group Reports and
Supplemental Proceedings (ITiCSE-WGR ’97). ACM, New York, NY, USA, 129–131.
http://doi.acm.org/10.1145/266057.266141

[17] Xiang Fu, Boris Peltsverger, Kai Qian, Lixin Tao, and Jigang Liu. 2008. APOGEE:
Automated Project Grading and Instant Feedback System for Web Based Comput-
ing. In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’08). ACM, New York, NY, USA, 77–81. http://doi.acm.org/10.
1145/1352135.1352163

[18] Michael H. Goldwasser. 2002. A Gimmick to Integrate Software Testing Through-
out the Curriculum. In Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’02). ACM, New York, NY, USA, 271–275.
http://doi.acm.org/10.1145/563340.563446

[19] J. B. Hext and J. W. Winings. 1969. An Automatic Grading Scheme for Simple
Programming Exercises. Commun. ACM 12, 5 (May 1969), 272–275. http://doi.
acm.org/10.1145/362946.362981

[20] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 36th International Conference
on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 435–445. http:
//doi.acm.org/10.1145/2568225.2568271

[21] Peter C. Isaacson and Terry A. Scott. 1989. Automating the Execution of Student
Programs. SIGCSE Bull. 21, 2 (June 1989), 15–22. http://doi.acm.org/10.1145/
65738.65741

[22] David Jackson. 2000. A Semi-automated Approach to Online Assessment. In
Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSEconference on Innovation
and Technology in Computer Science Education (ITiCSE ’00). ACM, New York, NY,
USA, 164–167. http://doi.acm.org/10.1145/343048.343160

[23] David Jackson and Michelle Usher. 1997. Grading Student Programs Using
ASSYST. In Proceedings of the Twenty-eighth SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’97). ACM, New York, NY, USA, 335–339.
http://doi.acm.org/10.1145/268084.268210

[24] David G. Kay, Terry Scott, Peter Isaacson, and Kenneth A. Reek. 1994. Automated
Grading Assistance for Student Programs. In Proceedings of the Twenty-fifth
SIGCSE Symposium on Computer Science Education (SIGCSE ’94). ACM, New York,
NY, USA, 381–382. http://doi.acm.org/10.1145/191029.191184

[25] Will Marrero and Amber Settle. 2005. Testing First: Emphasizing Testing in Early
Programming Courses. In Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’05). ACM, New
York, NY, USA, 4–8. http://doi.acm.org/10.1145/1067445.1067451

[26] Sebastian Pape, Julian Flake, Andreas Beckmann, and Jan Jürjens. 2016. STAGE:
A Software Tool for Automatic Grading of Testing Exercises: Case Study Paper.
In Proceedings of the 38th International Conference on Software Engineering Com-
panion (ICSE ’16). ACM, New York, NY, USA, 491–500. http://doi.acm.org/10.
1145/2889160.2889203

[27] Joe Gibbs Politz, Shriram Krishnamurthi, and Kathi Fisler. 2014. In-flow Peer-
review of Tests in Test-first Programming. In ICER. ACM, New York, NY, USA,
11–18. http://doi.acm.org/10.1145/2632320.2632347

[28] Jon Postel. 1980. Transmission Control Protocol. Internet-Draft. Internet Engineer-
ing Task Force. https://tools.ietf.org/html/rfc761

[29] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A Vector Space Model
for Automatic Indexing. Commun. ACM 18, 11 (Nov. 1975), 613–620. http:
//doi.acm.org/10.1145/361219.361220

[30] Zalia Shams and Stephen H. Edwards. 2013. Toward Practical Mutation Analysis
for Evaluating the Quality of Student-written Software Tests. In Proceedings
of the Ninth Annual International ACM Conference on International Computing
Education Research (ICER ’13). ACM, New York, NY, USA, 53–58. http://doi.acm.
org/10.1145/2493394.2493402

[31] K. K. Sharma, Kunal Banerjee, and Chittaranjan Mandal. 2014. A Scheme for
Automated Evaluation of Programming Assignments Using FSMD Based Equiva-
lence Checking. In Proceedings of the 6th IBM Collaborative Academia Research
Exchange Conference (I-CARE) on I-CARE 2014 (I-CARE 2014). ACM, New York,
NY, USA, Article 10, 4 pages. http://doi.acm.org/10.1145/2662117.2662127

[32] Joanna Smith, Joe Tessler, Elliot Kramer, and Calvin Lin. 2012. Using Peer
Review to Teach Software Testing. In Proceedings of the Ninth Annual International
Conference on International Computing Education Research (ICER ’12). ACM, New
York, NY, USA, 93–98. http://doi.acm.org/10.1145/2361276.2361295

[33] Rebecca Smith, Terry Tang, Joe Warren, and Scott Rixner. 2017. An Automated
System for Interactively Learning Software Testing. In Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’17). ACM, New York, NY, USA, 98–103. http://doi.acm.org/10.1145/
3059009.3059022

[34] Jaime Spacco, Jaymie Strecker, David Hovemeyer, and William Pugh. 2005. Soft-
ware Repository Mining with Marmoset: An Automated Programming Project
Snapshot and Testing System. In Proceedings of the 2005 International Work-
shop on Mining Software Repositories (MSR ’05). ACM, New York, NY, USA, 1–5.
http://doi.acm.org/10.1145/1082983.1083149

[35] Matthew Thornton, Stephen H. Edwards, Roy P. Tan, and Manuel A. Pérez-
Quiñones. 2008. Supporting Student-written Tests of Gui Programs. In Proceedings
of the 39th SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’08). ACM, New York, NY, USA, 537–541. http://doi.acm.org/10.1145/1352135.
1352316

[36] Urs von Matt. 1994. Kassandra: The Automatic Grading System. SIGCUE Outlook
22, 1 (Jan. 1994), 26–40. http://doi.acm.org/10.1145/182107.182101

9

http://doi.acm.org/10.1145/1869542.1869567
http://doi.acm.org/10.1145/2676723.2677247
http://doi.acm.org/10.1145/351240.351266
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
https://www.pyret.org/docs/latest/testing.html
https://doc.rust-lang.org/book/second-edition/ch11-00-testing.html
http://doi.acm.org/10.1145/1029994.1029995
http://doi.acm.org/10.1145/1029994.1029995
http://doi.acm.org/10.1145/2591062.2591164
http://doi.acm.org/10.1145/2591708.2591757
http://doi.acm.org/10.1145/2157136.2157202
http://doi.acm.org/10.1145/1007996.1008033
http://doi.acm.org/10.1145/364914.364937
http://doi.acm.org/10.1145/364914.364937
http://doi.acm.org/10.1145/266057.266141
http://doi.acm.org/10.1145/1352135.1352163
http://doi.acm.org/10.1145/1352135.1352163
http://doi.acm.org/10.1145/563340.563446
http://doi.acm.org/10.1145/362946.362981
http://doi.acm.org/10.1145/362946.362981
http://doi.acm.org/10.1145/2568225.2568271
http://doi.acm.org/10.1145/2568225.2568271
http://doi.acm.org/10.1145/65738.65741
http://doi.acm.org/10.1145/65738.65741
http://doi.acm.org/10.1145/343048.343160
http://doi.acm.org/10.1145/268084.268210
http://doi.acm.org/10.1145/191029.191184
http://doi.acm.org/10.1145/1067445.1067451
http://doi.acm.org/10.1145/2889160.2889203
http://doi.acm.org/10.1145/2889160.2889203
http://doi.acm.org/10.1145/2632320.2632347
https://tools.ietf.org/html/rfc761
http://doi.acm.org/10.1145/361219.361220
http://doi.acm.org/10.1145/361219.361220
http://doi.acm.org/10.1145/2493394.2493402
http://doi.acm.org/10.1145/2493394.2493402
http://doi.acm.org/10.1145/2662117.2662127
http://doi.acm.org/10.1145/2361276.2361295
http://doi.acm.org/10.1145/3059009.3059022
http://doi.acm.org/10.1145/3059009.3059022
http://doi.acm.org/10.1145/1082983.1083149
http://doi.acm.org/10.1145/1352135.1352316
http://doi.acm.org/10.1145/1352135.1352316
http://doi.acm.org/10.1145/182107.182101

	Abstract
	1 Introduction
	2 Related Work
	2.1 Evaluating Implementation Correctness
	2.2 Evaluating Test Suites

	3 Assumptions and Terminology
	4 Models of Assessment
	4.1 Axiomatic (Axm)
	4.2 Algorithmic: Single Implementation (AlgSing)
	4.3 Algorithmic: Multiple Implementation (AlgMult)

	5 Testing the Tester
	6 Evaluation On Course Data
	6.1 Impact on Implementation Assessment
	6.2 Impact on Assessing Test Suites
	6.3 Takeaway

	7 Discussion
	References

